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Abstract:

In an Internet of Thing (loT) environment, entities with different attributes and capacities are going
to be connected in a highly connected fashion. Specifically, not only the mechanical and electronic devices
but also other entities such as people, locations, and applications are connected to each other. Most IoT
applications must work with dynamic and speedily changing systems due to new entities are coming online
and/or the connection between these entities can change regularly. This requires a data model that enables
to easily represent the entities and support adding, deleting, and updating relations between entities
without impacting application availability. Fortunately, graph databases are purposely-built to store
highly connected data with nodes representing entities and edges representing relationships between these
entities. In this paper, we propose a general graph model that can be used to design graph databases in
order to support effectively storing and analyzing IoT data. We represent loT data based on a graph model
and consider smart building data management as a case study. Through the analysis and comparison of
experimental results in various aspects, we find that our graph modeling approach is applicable for storing
and analyzing the loT connected data.
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1. Introduction

In recent years, some domains have emerged
with prominent IoT applications like smart
smart health,
smart farm [1]. These IoT applications manage

transportation, smart home/city,
heterogeneous data with four main characteristics
including heterogeneity, highly connected data,
dynamic changes, and massive real-time data.
The main technical requirements of these IoT
applications include (1) a flexible data model and (2)
real-time response. Fortunately, graph databases are
purposely-built to store highly connected data with
nodes representing entities and edges representing
relationships between these entities.

There are a lot of real-life IoT applications
exploiting graph-based techniques as a key
component to bring various benefits to a variety of
domains [2][3][4][5].

* Evacuation Systems in Smart Buildings:
Smart buildings are becoming a reality with the
support of smart devices such as smart indicators,
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smart sensors, smart cameras, and RFIDs [2]. These
smart devices play an important role in monitoring
and tracking the events/conditions inside the
building to provide useful information for building
management systems. Recently, the weighted graph-
based approaches using IoT data in smart buildings
have proved to be efficient in dynamically find the
evacuation routes during disaster situations [3].

» Smart Transport Services: 10T technology
allows people to get a new experience in the taxi
industry. For example, transportation network
companies like Uber, Grab, or Kakao have created
smart services by collecting, storing, and processing
the data from a huge number of smartphones running
their application. The locations of customers and
taxi drivers mixed with data on traffic flow, weather,
and other events to generate a weighted graph that
enables picking up the best driver for customers [4].
These are good examples of the business value that
IoT can bring by using graph databases.

* Social Networks: A social media application
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(e.g., Facebook) is about connections between
people, therefore, it has a graph structure. It is
obvious that graph databases are well-suited to
social media applications. They speed up the
development of such applications, enhance an app’s
overall performance, and support companies to
understand their data [5].

Understanding connections between things in
such IoT applications above plays an important role
for businesses, which identify opportunities for new
services. To do this, businesses need techniques that
can evaluate the connections quickly and easily in
a real-time manner. Traditional approaches for
storing and querying IoT data are used of relational
database management systems (RDMS) such as
MySQL or MSSQL. However, using RDMS is not
flexible and sufficient for handling heterogeneous
IoT data because these data have deeply complex
relationships that require nested queries and
complex joins on multiple tables [6]. Motivated
by useful IoT applications and the limitations of
traditional IoT data management systems, we study
on graph-based modeling for heterogeneous IoT
data management.

In this paper, we propose a general graph model
that can be used to design graph databases in order
to support effectively storing and analyzing IoT
data. We represent loT data based on a graph model
and consider smart building data management as a
case study. Through the analysis and comparison
of experimental results in various aspects, we find
that our graph modeling approach is applicable for
storing and analyzing the IoT connected data.

2. Background

In this section, we describe two main tasks
of a general IoT data management system with
consideration of data storing and data analyzing.
2.1. Storing IoT Data

Traditional IoT platforms often use relational
databases (e.g., MySQL, MSSQL, MariaDB) which
are well-documented and mature technologies.
However, using a relational database is insufficient
IoT data (e.g.,
structured, semistructured, and unstructured) due

for managing heterogeneous

to complex relationships that require nested queries
and complex joins on multiple tables. Inrecent years,
non-relation (NoSQL) databases have emerged as a
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popular alternative to relational databases, which
allow representing unstructured and semi-structured
data in a schema-free way. There are varied types
of NoSQL databases including key-value, column-
family, document, and graph databases. Among
them, the graph database is one of the most popular
databases used by enterprises. Therefore, we prefer
to use a graph database for storing connected IoT
data.

2.2. Analyzing IoT Data

Although analyzing IoT data is necessary, the
manual handle is impractical due to its enormous
volume. As a result, almost all analyzing methods
pay their attention to automation job. IoT data,
which consists of device status and sensor readings,
are employed by analytic tools to implement a lot
of work. Specifically, this usage could provide
meaningful reports illustrated by dashboards, or
trigger warnings with some situations. At this
time, there are numerous open source analytic
frameworks that can support analyzing these data.
The analyzing job could be done under a real-time
manner, or by a batch handling with a large amount
of data.

Data processing approaches: There are
two data processing methods being used for IoT
systems, which are decentralized and centralized
ones. Regarding the former, which is also known
to be distributed, it transfers the program down to
the data and returns solely results. As a result, the
volume of data transferred to higher-layers storage
should decrease much. One of the most famous
distributed data processing frameworks is Apache
Hadoop, which is respected as one of the pioneers to
analyze big data. In which, MapReduce [7] engine
is employed to handle distributed data. Applying
Hadoop/MapReduce for historical IoT data analysis
without the concern of time is considered as an ideal
method. In the respect of the centralized processing,
there is a need for the data, under the raw or
aggregated form, to be taken to a single storage to
be processed. Besides, a hybrid from these could
be employed to form more complicating systems,
which could satisfy the urge for customization from
different IoT applications.

Query processing and optimization: For
extracting knowledge from data, query execution
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plans are considered, which are used to fetch data.
Normally, the places to process query and storage
should be close to issuing these plans. Traditional
query optimization involves assigning a cost to each
of the different plans for obtaining data in order to
choose the plan which costs the least [8]. In the
context of IoT, using graph queries is an efficient
way of understanding the IoT data managed by
graph databases.
3. Graph-based Modeling for Storing and
Analyzing Heterogeneous IoT Data

In this chapter, we formally define graph
models that can be used to design graph databases
for storing IoT data so that it supports multiple
kinds of graph queries. We represent loT data based
on graph models and consider smart building data
management as a case study.
3.1. A Graph-based View on IoT Data

A conceptual view of IoT data could be
represented as in Figure 1. That is fused by a social
graph, a spatial graph, and a things graph into one
graph model, and incorporates the relationships
among them. The graph components are explained
in more detail as follows.

== Spatial Graph

===) Things Graph

Figure 1. A conceptual view of IoT Graph Data
a) Things Graph

This

sensors and devices and their connectivity. Each

graph represents entities including
node represents a sensor or a device with different
attributes such as SensorID, Name, Type, Position,
Status, Timestamp, and Value. An edge represents
the relationship between two sensors/devices, and
two types of edge-label are used in things graph

including Connects and Links.
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b) Spatial Graph

This graph represents locations and their
proximity. Each node is a place with attributes such
as LocationID, PlaceName, and Coordinates. Each
edge indicates the proximity between two locations.
Besides, a node in the Spatial Graph could be
connected by nodes in the Things Graph, which
indicates that some sensors/devices are employed at
certain locations. This relation between a thing and
a location is represented by using AsignedTo type
edge. Also, a node in the Spatial Graph could be
connected by another node from the Social Graph
to show who is in a specific location. There are
four edge types to represent these kinds of relations
including WorksAt, WorksFor, StudiesAt, and
LivesAt.

¢) Social Graph

This graph represents people who are using
IoT devices and their relationship. Each node is
a person with some attributes such as ID, Name,
Age, and Title. An edge represents the relationship
between two people. Furthermore, a node of Social
Graph could be connected to a node from Spatial
Graph to show where a person is and connected to
a node from Things Graph to indicate which things
are used by a person.

3.2. IoT Graph Data Modeling

Graph data modeling is the translation of
a dataset in a conceptual view to a graph model.
During the graph modeling process, we determine
which entities in the dataset should be nodes (or
vertex), which should be edges, and which should be
properties. The result is a blueprint of whole entities,
relationships, and properties in the dataset. We can
use that blueprint to create a visualization model.

In fact, an entity or a relationship could have
several properties. For instance, a person is identified
by his/her national ID, first name, last name, birth
of date, and he/she might have a relationship as
a colleague with another person since 2019. For
representing data in detail and rich information, a
comprehensive graph model is introduced which is
named a property graph. The property graph is first
introduced in [9], and a formal definition is given
by Angles et al. in [10]. In the later one, a property
graph is defined as a tuple (V, E, p, A, §), where V is
a set of nodes and E is a set of edges in the graph,
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p is a total function E — V x V, X is a total function
that defines labels on both V and E, & is a partial
function that maps a property of a node or an edge
to a value. We present an extension of the property
graph to support data modeling to be easy and more
clear.

Property Graph. A property graph is a tuple G =
(V,E,XZ,0,F A, P, 3, 0), where:

* V: is a finite set of nodes (vertices)

* E: is a finite set of edges

* X: is a finite set of labels for edges

* @: is a finite set of labels for nodes

* F: is the function mapping each node v € V to a
label from @.

* A: is the function mapping each edge ¢ € E to a
label from X.

* P: is a finite set of property names for vertices/edges
* 9: is the function mapping each node v € V with a
given property p € P to a specific value.

* o: is the function mapping each edge ¢ € E with a
given property p € P to a specific value.

Device
[name: Laptop

Person Samsung]

Department

[name: Computer
Engineering]

age: 28] [since: 2014]

Figure 2. An example of loT graph data modeling

Node
Type 2

[n2_property_1: n2_value_1,
n2_property_2: n2_value_2,

Relationship
[ e_property_1: value_1,
e_property_2: value_2,

e_propen;;k value_k ]

Edge Properties
(key/value pairs)

Node
Type 1

[n1_property_1: n1_value_1,
ni_property_2: ni1_value_2,

n2 _pmperty:;'l: n2_value_n]

\_’_J

Node Properties
(key/value pairs)

ni_property_m: n1_value_m]

%_l

Node Properties
(key/value pairs)

Figure 3. The format of nodes and edges in the
property graph

24 Khoa hoc & Cong nghé - S5 27/Thang 9 - 2020

Example: An illustration of a property graph is
shown in Figure 2. In this example, the values of
V, E, X, F, and A are not difficult to recognize. Here,
the property graph has three more parameters P, 3,
and o, where P = {name, age, no, time, since}, the
example of mapping functions for node properties
and edge properties (a few of them) are listed as the
following:

9(1, name) = Quyet 9(1, age) =32
9(6, name) = Computer Engineering
3(4,no) =718

o((1, 3), since) = 2019

o((5, 7), time) = 2019/05/01 2:00PM

Thus, we can understand that properties are
name-value pairs which are used to add qualities
(more information) to nodes and relationships
(edges). A set of properties for each type of node/
edge is specified by using the format shown in
Figure 3. The value part of the property can hold
different data types such as string, number, and date
time. Each node and edge can have zero or few
properties. For example, node 1 has two properties
including name and age, and edge (1,3) has only
one property since, while edge (2,5) has no property
(the value will be null when we map any property
name on the edge (2,5)).

From the conceptual view of IoT data, we
can categorize the entities in an IoT system into
three main groups including People, Locations, and
Things for the brevity of the explanation. Besides,
there are a few other groups related Things such as
Applications or Permissions could be considered for
representing loT data. It depends on the objectives
of the IoT systems. In this paper, we consider the
IoT data management for smart building evacuation
systems as a case study, therefore, we will describe
the main groups and entities related to such a kind
of system. For a better data representation and data
exploration, we specify all entities in each group,
each of them is considered as a node type (or node
label) in the IoT graph model, and the relationship
between two nodes is represented as an edge. The
descriptions of nodes, edges, and their relationships
in our graph model are described in Table 1 and
Table 2, respectively.
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Table 1. Node Types Description

Node Type Properties Group
ID, Name, Age, Height, Weight, Title,
Person People
Residence, GSP Location, Phone Number
Room RoomID, Room Number, Capacity
Locations
DepartmentID, Department Number,
Department
Number of Member
CompanyID, Company Name, Number of
Company
Employee
UniversityID, University Name, Number
University
of Staff
City CityID, City Name, Area, Population
DeviceID, Device Name, Type, Position,
Device
Status, Value Things
Mobile Device MobileID, Mobile Name, Status
Table 2. Edge Types Description
Node Type 1 | Edge Type Node Type 2 | Properties
MemberQf D Since
ment
LeaderOf epart Since
ColleagueOf Since
Person
FriendOf Since
Knows Since
Person
HasEmergencyContact Relationship
WorksAt Room Status
WorksFor Company Since
StudiesAt University Since
LivesAt City Since
Qwns Mobile Device
Room BelongTo Department
Department IsPartOf Company
Company IsLocatedIn Sinee
University IsLocatedIn City Since
City NearBy Distance
X AssignedTo Room Since
Device -
ConnectTo Device Status
Mobile Device | AccessTo Device Last Access Time

4. Experimental Evaluation

Exp-1: Analysis of IoT Graph Data

In this experiment, we analyze the graph
characteristics with the changes in heterogeneous
[oT data. To do this, we first generate a graph
database by using gMark [11]. This graph follows
the model that we presented in the previous section.
It has 36,000 nodes, 273,610 edges, and 19 edge-
labels. The occurrence of labels follows the given
Zipfian or uniform distribution. We then extract
from the graph to obtain other six smaller graphs
which contain only one or two kinds of graph from
things, social, and spatial graphs. Finally, we use
Gephi [12] to analyze the changes of parameters
of these graphs. Specifically, we consider the
following graph parameters:
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* Graph size: the number of nodes (|V|) and
edges (|E|).

* Number of relationships (|L|): the number of
different labels in the graphs.

» Average degree: in a directed graph, it is
defined as the fraction of the number of edges to the
number of nodes.

* Average path length: the average number of
steps along the shortest paths for all possible pairs
of nodes.

* Diameter (D): the number of edges in the
shortest path between the most distant nodes.

 Strongly connected components (|C|): the
maximal strongly connected subgraph, in which, a
subgraph is called a strongly connected component
if there is a path between all pairs of nodes.

Table 3 illustrates the results of analyzing
graph parameters. We observe that when different
graphs are fused together, it could generate a more
complex graph with the increase of the number of
relationships, the average degree, the average path
length, and the value of other parameters. This
causes substantial searching cost and long response
time due to the large size of the graph and/or
complex queries.

Exp-2: Evaluation of Query Performance

We evaluate the efficiency of analyzing loT
data using graph query. To do this, we compare the
query performance between T-SQL queries on a
relational database and Cypher queries on a graph
database. We use the IoT dataset generated in Exp-
1. We convert and import this dataset into 14 tables
in MySQL with 256,318 records. The dataset is also
imported to a graph database, Neo4j, with 36,000
nodes and 273,610 edges.

In this experiment, we use four common types
of query including Look Up, Range, Complex
(Join/Nested), and Aggregation, which are often
used to extract knowledge from IoT data We write
twelve queries, each type of query has three queries.
The queries are written in both SQL language for
running on MySQL and Cypher language for
running on Neo4J. The experimental results are
illustrated in Figure 4.
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Table 3. Analysis of IoT Graph Characteristics

Avg.
Average
Graph 4] |E| 17 Path | D | |C|
Degree
Length

Social Graph 10,000 | 112,155 | 4 11.22 529 | 9 37
Things Graph 25,000 | 100,352 2 4.01 12.31 | 35 | 10,884
Spatial Graph 1,000 1,044 | 4 1.04 6.99 | 14 949
Social + Things Graph 35,000 | 222,507 | 7 6.36 9.50 | 35 | 10,885
Social + Spatial Graph 11,000 | 148,239 | 14 13.48 528 | 14 950
Things + Spatial Graph | 26,000 | 116,415 | 8 448 | 122335/ 11,833
Things + Social + Spatial | 36,000 | 273,610 | 18 7.60 9.50 | 35 | 11,839

g

& Cypher on Graph Database (Neo4])

g

:

Exceution Time (ms)

nonog [ f

OT-SQL on Relation Database (MySQL)

Q. Q@2 @8 Q4

Q6

Q7 Q10
#Query

Qe Q9 Q11 Q12

Figure 4. Query performance comparision between relational database and graph database

From the results, we found that using Cypher queries
on Neo4J can obtain better performance comparing
to using SQL queries on MySQL in all the cases in
overall. Specifically, the Look Up queries (#1, #2,
#4) and Range queries (#4, #5, #6) take a low cost
on both relational databases and graph databases.
In the case of testing complex queries like Nested
queries (#Q7, #Q8, #9), the performance of using
Cypher queries on graph databases is much faster
than the one using SQL queries on relational
databases. We observed that Cypher queries reduced
the average execution time around 3, 6, 6 times than
SQL queries corresponding to #Q7, #Q8, and #Q9,
respectively. We also observed that Aggregation
queries on graph databases often take high cost.
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Indeed, their performance is up to 3 times slower
than the ones with SQL queries (#10, #11, #12).

5. Conclusion

This paper proposed a graph model for
representing [oT data. The proposed graph model
represented entities in IoT environment such as
devices, locations, people with attributes and
relationships between two entities. The efficiency
of the proposed graph model was evaluated on
a simulated smart building management dataset.
Experimental results showed that the proposed
model is more efficient than relational model in
storing and analyzing [oT data.
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MOT CACH MO HiNH HOA BANG PO THI HIEU QUA CHO VIEC
LUU TRU VA PHAN TiCH DU LIEU IOT HON HQP

Tom tat:

Trong méi triong Internet of Thing (IoT), cdc thiee thé véi cac thude tinh va sé lwong khéc nhau sé két
néi voi nhau tao thanh mot mang heéi lién két day ddc. Cu thé, khong chi cdc thiét bi méay méc ma con cdc
thiee thé khdc nhw con nguwoi, dia diém va iing dung dwge két noi véi nhau. Hau hét cdc vimg dung IoT phai
déu phai déi dién véi cdc thach thirc khi mét luong lon dir liéu thay doi nhanh chong do cdc thuc thé méi
dang duwoc thém vio hé thong hodc trang thai két néi giiva cdc thiee thé thay doi thuong xuyén. Diéu ndy yéu
cau mot mo hinh dir liéu cho phép déNddng trong viéc biéu dién cdc thuc thé va ho tro lwu trix, thém, xoa va
cdp nhdt quan hé giita cac thue thé ma khong anh hwong dén tinh kha dung ciia g dung. Trong bai bdo
nay, chiing téi dé xudt mot mé hinh do thi chung c6 thé dwoc sir dung dé thiét ké co sé dir liéu do thi hé tro
hiéu qua cho viéc luu triv va phan tich dir liu loT. Chung toi biéu dién dit liéu 1oT duwa trén mé hinh dé thi
va ldy viéc quan Iy dit liéu ciia toa nha théng minh la mét trwong hop minh hoa. Théng qua viéc phén tich
két qua thuwe nghiém va so sanh & cdc khia canh khac nhau, chiing t6i thdy rang phwong phdp tiép cin bang
mé hinh do thi c6 thé ap dung d@é heu triv va phan tich dit liéu IoT hon hop mét cach hiéu qua.

Tir khéa: M6 hinh héa do thi, Co so dir liéu do thi, Truy van do thi, Dir liéu két noi, Quan 1y dit liéu IoT.
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